

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF INFORMATION TECHNOLOGY

III Year – I Semester		L	T	P	C
		3	0	0	3
DESIGN AND ANALYSIS OF ALGORITHMS					

Course Objectives:

Upon completion of this course, students will be able to do the following:

- Ability to understand, analyze and denote time complexities of algorithms
- To introduce the different algorithmic approaches for problem solving through numerous example problems
- Describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for it. Recite algorithms that employ this paradigm. Synthesize dynamic-programming algorithms, and analyze them.
- To provide some theoretical grounding in terms of finding the lower bounds of algorithms and the NP-completeness

Course Outcomes: After the completion of the course, student will be able to

- Analyze the performance of a given algorithm, denote its time complexity using the asymptotic notation for recursive and non-recursive algorithms
- List and describe various algorithmic approaches and Solve problems using divide and conquer &greedy Method
- Synthesize efficient algorithms dynamic programming approaches to solve in common engineering design situations.
- Organize important algorithmic design paradigms and methods of analysis: backtracking, branch and bound algorithmic approaches
- Demonstrate NP- Completeness theory, lower bound theory and String Matching

UNIT I:

Introduction: Algorithm Definition, Algorithm Specification, performance Analysis, Performance measurement, asymptotic notation, Randomized Algorithms.

UNIT II:

Divide and Conquer: General Method, Defective chessboard, Binary Search, finding the maximum and minimum, Merge sort, Quick sort.

The Greedy Method: The general Method, knapsack problem, minimum-cost spanning Trees, Optimal Merge Patterns, Single Source Shortest Paths.

UNIT III:

Dynamic Programming: The general method, multistage graphs, All pairs-shortest paths, optimal Binary search trees, 0/1 knapsack, The traveling salesperson problem.

UNIT IV:

Backtracking: The General Method, The 8-Queens problem, sum of subsets, Graph coloring, Hamiltonian cycles, knapsack problem.

UNIT V:

NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP - Hard and NP-Complete classes, Cook's theorem.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF INFORMATION TECHNOLOGY

Text Books:

- Ellis Horowitz, SartajSahni, Sanguthevar Rajasekaran, "Fundamentals of Computer Algorithms", 2nd Edition, Universities Press.
- 2. Introduction to Algorithms Thomas H. Cormen, PHI Learning
- 3. Harsh Bhasin, "Algorithms Design & Analysis", Oxford University Press.

Reference Books:

- 1. Horowitz E. Sahani S: "Fundamentals of Computer Algorithms", 2nd Edition, Galgotia Publications, 2008.
- 2. S. Sridhar, "Design and Analysis of Algorithms", Oxford University Press.